18 research outputs found

    A Deep Learning Approach to Predicting Collateral Flow in Stroke Patients Using Radiomic Features from Perfusion Images

    Full text link
    Collateral circulation results from specialized anastomotic channels which are capable of providing oxygenated blood to regions with compromised blood flow caused by ischemic injuries. The quality of collateral circulation has been established as a key factor in determining the likelihood of a favorable clinical outcome and goes a long way to determine the choice of stroke care model - that is the decision to transport or treat eligible patients immediately. Though there exist several imaging methods and grading criteria for quantifying collateral blood flow, the actual grading is mostly done through manual inspection of the acquired images. This approach is associated with a number of challenges. First, it is time-consuming - the clinician needs to scan through several slices of images to ascertain the region of interest before deciding on what severity grade to assign to a patient. Second, there is a high tendency for bias and inconsistency in the final grade assigned to a patient depending on the experience level of the clinician. We present a deep learning approach to predicting collateral flow grading in stroke patients based on radiomic features extracted from MR perfusion data. First, we formulate a region of interest detection task as a reinforcement learning problem and train a deep learning network to automatically detect the occluded region within the 3D MR perfusion volumes. Second, we extract radiomic features from the obtained region of interest through local image descriptors and denoising auto-encoders. Finally, we apply a convolutional neural network and other machine learning classifiers to the extracted radiomic features to automatically predict the collateral flow grading of the given patient volume as one of three severity classes - no flow (0), moderate flow (1), and good flow (2)..

    A deep learning approach to predict collateral flow in stroke patients using radiomic features from perfusion images.

    Get PDF
    Collateral circulation results from specialized anastomotic channels which are capable of providing oxygenated blood to regions with compromised blood flow caused by arterial obstruction. The quality of collateral circulation has been established as a key factor in determining the likelihood of a favorable clinical outcome and goes a long way to determining the choice of a stroke care model. Though many imaging and grading methods exist for quantifying collateral blood flow, the actual grading is mostly done through manual inspection. This approach is associated with a number of challenges. First, it is time-consuming. Second, there is a high tendency for bias and inconsistency in the final grade assigned to a patient depending on the experience level of the clinician. We present a multi-stage deep learning approach to predict collateral flow grading in stroke patients based on radiomic features extracted from MR perfusion data. First, we formulate a region of interest detection task as a reinforcement learning problem and train a deep learning network to automatically detect the occluded region within the 3D MR perfusion volumes. Second, we extract radiomic features from the obtained region of interest through local image descriptors and denoising auto-encoders. Finally, we apply a convolutional neural network and other machine learning classifiers to the extracted radiomic features to automatically predict the collateral flow grading of the given patient volume as one of three severity classes - no flow (0), moderate flow (1), and good flow (2). Results from our experiments show an overall accuracy of 72% in the three-class prediction task. With an inter-observer agreement of 16% and a maximum intra-observer agreement of 74% in a similar experiment, our automated deep learning approach demonstrates a performance comparable to expert grading, is faster than visual inspection, and eliminates the problem of grading bias

    Application of machine learning to pretherapeutically estimate dosimetry in men with advanced prostate cancer treated with 177Lu-PSMA I&T therapy

    Full text link
    Purpose: Although treatment planning and individualized dose application for emerging prostate-specific membrane antigen (PSMA)-targeted radioligand therapy (RLT) are generally recommended, it is still difficult to implement in practice at the moment. In this study, we aimed to prove the concept of pretherapeutic prediction of dosimetry based on imaging and laboratory measurements before the RLT treatment. Methods: Twenty-three patients with metastatic castration-resistant prostate cancer (mCRPC) treated with 177Lu-PSMA I&T RLT were included retrospectively. They had available pre-therapy 68 Ga-PSMA-HEBD-CC PET/CT and at least 3 planar and 1 SPECT/CT imaging for dosimetry. Overall, 43 cycles of 177Lu-PSMA I&T RLT were applied. Organ-based standard uptake values (SUVs) were obtained from pre-therapy PET/CT scans. Patient dosimetry was calculated for the kidney, liver, spleen, and salivary glands using Hermes Hybrid Dosimetry 4.0 from the planar and SPECT/CT images. Machine learning methods were explored for dose prediction from organ SUVs and laboratory measurements. The uncertainty of these dose predictions was compared with the population-based dosimetry estimates. Mean absolute percentage error (MAPE) was used to assess the prediction uncertainty of estimated dosimetry. Results: An optimal machine learning method achieved a dosimetry prediction MAPE of 15.8 ± 13.2% for the kidney, 29.6% ± 13.7% for the liver, 23.8% ± 13.1% for the salivary glands, and 32.1 ± 31.4% for the spleen. In contrast, the prediction based on literature population mean has significantly larger MAPE (p < 0.01), 25.5 ± 17.3% for the kidney, 139.1% ± 111.5% for the liver, 67.0 ± 58.3% for the salivary glands, and 54.1 ± 215.3% for the spleen. Conclusion: The preliminary results confirmed the feasibility of pretherapeutic estimation of treatment dosimetry and its added value to empirical population-based estimation. The exploration of dose prediction may support the implementation of treatment planning for RLT

    Application of machine learning to pretherapeutically estimate dosimetry in men with advanced prostate cancer treated with 177Lu-PSMA I&T therapy.

    Get PDF
    PURPOSE Although treatment planning and individualized dose application for emerging prostate-specific membrane antigen (PSMA)-targeted radioligand therapy (RLT) are generally recommended, it is still difficult to implement in practice at the moment. In this study, we aimed to prove the concept of pretherapeutic prediction of dosimetry based on imaging and laboratory measurements before the RLT treatment. METHODS Twenty-three patients with metastatic castration-resistant prostate cancer (mCRPC) treated with 177Lu-PSMA I&T RLT were included retrospectively. They had available pre-therapy 68 Ga-PSMA-HEBD-CC PET/CT and at least 3 planar and 1 SPECT/CT imaging for dosimetry. Overall, 43 cycles of 177Lu-PSMA I&T RLT were applied. Organ-based standard uptake values (SUVs) were obtained from pre-therapy PET/CT scans. Patient dosimetry was calculated for the kidney, liver, spleen, and salivary glands using Hermes Hybrid Dosimetry 4.0 from the planar and SPECT/CT images. Machine learning methods were explored for dose prediction from organ SUVs and laboratory measurements. The uncertainty of these dose predictions was compared with the population-based dosimetry estimates. Mean absolute percentage error (MAPE) was used to assess the prediction uncertainty of estimated dosimetry. RESULTS An optimal machine learning method achieved a dosimetry prediction MAPE of 15.8 ± 13.2% for the kidney, 29.6% ± 13.7% for the liver, 23.8% ± 13.1% for the salivary glands, and 32.1 ± 31.4% for the spleen. In contrast, the prediction based on literature population mean has significantly larger MAPE (p < 0.01), 25.5 ± 17.3% for the kidney, 139.1% ± 111.5% for the liver, 67.0 ± 58.3% for the salivary glands, and 54.1 ± 215.3% for the spleen. CONCLUSION The preliminary results confirmed the feasibility of pretherapeutic estimation of treatment dosimetry and its added value to empirical population-based estimation. The exploration of dose prediction may support the implementation of treatment planning for RLT

    Proof-of-concept Study to Estimate Individual Post-Therapy Dosimetry in Men with Advanced Prostate Cancer Treated with 177Lu-PSMA I&T Therapy

    Full text link
    It is still debating if individualized dose should be applied for the emerging PSMA-targeted radionuclide therapy (RLT). A critical consideration in this debate is the necessity and feasibility of individual estimation of post-therapy dosimetry before the treatment. In this study, we aimed to prove the concept of individual dosimetry prediction based on pre-therapy imaging and laboratory measurements. Methods: 23 patients with metastatic castration-resistant prostate cancer (mCRPC) treated with 177Lu-PSMA-I&T RLT were included retrospectively. Included patients had available pre-therapeutic 68Ga-PSMA-HEBD-CC PET/CT and at least 3 planar and 1 SPECT/CT dosimetry imaging. Overall, 43 cycles of 177Lu-PSMA I&T RLT were applied. Organ-based standard uptake value (SUV) uptake was obtained from pretherapy PET/CT scans. Patient individual dosimetry was calculated for kidney, liver, spleen, and salivary glands using Hermes Hybrid Dosimetry 4.0 from the post-treatment 177Lu-PSMA I&T imaging studies. Machine learning methods were explored for individual dose prediction from PET images. The accuracy of these dose predictions was compared with the accuracy of population-based dosimetry estimates. Mean absolute percentage error was used to assess the prediction error of estimated dosimetry. Results: An optimal machine learning method achieved a dosimetry prediction error of 15.8 ± 13.2% for kidney, 29.6%±13.7% for liver, 23.8%±13.1% for salivary glands and 32.1 ± 31.4% for spleen. In contrast, the prediction based on literature population mean has significantly larger error (p < 0.01), 25.5 ± 17.3% for kidney, 139.1%±111.5% for liver, 67.0 ± 58.3% for salivary glands, and 54.1 ± 215.3% for spleen. Conclusion: The preliminary results confirmed the feasibility of individual estimation of post-therapy dosimetry before the RLT and its added value to empirical population-based estimation. The exploration of individual dose prediction may support the identification of the role of treatment planning for RLT
    corecore